How to build a RESTful APl in
DataFlex 19.1

Mike Peat - Unicorn InterGlobal

2019

So what exactly is REST?

* REST stands for REpresentatonal State Transfer - coined by Dr
Roy Fielding in his PhD dissertation in 2000

 To unpack that a little: an aspect of the state (of either the
server or the client) is transferred from one to the other using
some representation (i.e. HTML or XML or JSON)

* Fielding based his thesis on the work he had previously done on
the internet standards: HTTP, URI/URL and HTML

* |n essence, to say something is RESTful means that it has an
architecture like the web

2019

What does that mean for us?

Essentially always over HTTP (or more likely HTTPS)

|dentifies course-grained resources through URLs

Operates on those resources through HTTP verbs

Transfers representations of those resources (as JSON in our case)
Returns HTTP response statuses (200 OK, 404 Not Found, etc.)
|dentifies content-type (application/json, in our case.)

Uses query-string paramerers (...?paraml=x¶m2=y, etc.)
Employs hypertext links (href)

2019

Hypertext Links (href elements)

In his thesis Fielding wrote: "REST is defined by ... hypermedia as the engine of application
state" (now the horrible acronym: HATEOAS)

Wikipedia on HATEOAS: "A REST client enters a REST application through a simple fixed
URL. All future actions the client may take are discovered within resource representations

returned from the server."

... and Fielding again: "If the engine of application state (and hence the API) is not being
driven by hypertext, then it cannot be RESTful and cannot be a REST API" (so there! ... at
least if you are a RESTafarian!)

2019

REST is not CRUD?

Many people say this, but at a basic level, there is a pretty close
correspondence with the operations we generally need to perform

on databases:
* Creating rows
 Reading one or more rows
* Updating a row
* Deleting a row
REST gives us the tools to do that

2019

The HTTP Verbs

Verbs used by RESTful APIs: GET, POST, PUT, PATCH and DELETE

GET is simple: it returns a representation of a resource - and must
also be "safe": have no side-effects

PUT is problematic, because it is supposed to be IDEMPOTENT
We will therefore use POST to create and PATCH to update

DELETE is obvious - it is also supposed to be Idempotent, but that's
OK: you can delete a given resource as often as you like... it's just
that after the first you will get "404 Not Found" errors

2019

Resources

Since HTTP is providing the verbs, resources should be nouns
In a REST context, there are really only two types of resources:

* Collections (the naming of which should be plural to indicate
that they are collections of items)
* |Instances - individual items within those collections

For us - at a basic level at least - these can correspond to tables
(collections) and rows within them (instances)

2019

Why would I need an API anyway?

In a nutshell: System Longevity and (Job) Security

If your system has an API, which other businesses (or business units)
utilise, it cannot be replaced by another system lacking a
functionally identical APl without breaking business continuity

Takeovers, mergers or new management notwithstanding, while
internal staff can have a new system imposed on them from above,
it is much harder to persuade business partners to rewrite parts of
their systems to match the current fad

2019

Why would I need an API anyway?

Every time inter-operating with another business entity comes up:

* |f you have an APl and they don't, it's a no-brainer: they use your API

* |If both parties have APIs then there will be a negotiation: this is where
the quality and ease of use of your APl matters

e Butif they have an APl and you don't then it is only going to go one
way: your system will depend on theirs, not the other way around

e All of which means that you should be developing one or more APIs
for your systems now, before the specific business requirement

emerges

2019

Why would I need an API anyway?

Every other system which uses an API into yours is another
anchor in the ground

Increasingly your application, its data, and, perhaps most
importantly, its business logic becomes the heart of a software
ecosystem

Your application is the core component that all those others
rely on

2019

Does it have to be RESTful?

Well, no... it doesn't...
You could go on using the familiar SOAP web services for your API

However that still leaves you tied to the fixed structs that the
DataFlex SOAP services deal in - using JSON objects can be much
more flexible, which often matters

Also RESTful services are what people and companies expect to deal
with these days - if you are going to do it, it makes sense to go with
that flow

2019

The DataFlex REST Library

The library basically contains three main classes (plus one sub-class)

All of these should turn up on your Class Palette when you use the
Library in your project Workspaces, which makes using them easy -
just drag-and-drop them in

e cRESTfulService
e cRESTResourceHandler
 cRESTApiObject

2019

The cRESTFulService class

This will be the provider of your RESTful web service
It is based on Data Access's cWebHttpHandler class (new in DF 19.1)

It has a primary method (procedure) ProcessHttpRequest which will
drive everything else through a Case statement which will direct
requests to the appropriate cRESTResourceHandler object

It acts as a container to hold your cRESTResouceHandler objects

It is analogous to the oClientArea in a Windows app or the
oWebApp in a web app (although it will actually be in the latter)

2019

The cRESTResourceHandler class

Objects of this class hold your Data Dictionary structures for the
various purposes you may have

They also hold the cRESTApiObjects which do the actual heavy lifting
in delivering the aspects of your API

They are analogous to "Views" or "Web Views", containing DDO
structures and controls

2019

The cRESTApiObject class

These are the workhorses of your API - analogous to controls

They provides the core functionality to List a collection, detail an
Instance, Create an instance, Update an instance or Delete an
instance

They have a phoDD property, which must be set to a DDO, and
which will determine (through that DDO's Main_File property)
which table it will operate on

They have a psColIName (collection name) property which will
determine which HTTP requests (URL) they will respond to

2019

The cRESTApiObject class

They have a psinstName property (largely cosmetic <g>)

They have a RequiredConditions function which can be used to pull
other required records into the DDOs when creating records, based
on the passed JSON

They have has a PostProc procedure which can be added to to
"decorate" instances with links to dependant collections (think
Orders — Details) or other "href" links

2019

The cRESTApiObject class

They have a PreProc function which ensures that the correct
constraining records - based on the parts of the path - are pulled
into parent DDOs automatically, but which can be overridden in the
event that multi-segment relationships are involved

By the same token, they have InstID and FindIinstance functions
which will correctly deal with simple cases automatically, but can be
overridden in the event that the required key has multiple segments

2019

A P I oWebApp

Structure
within
oWebApp

Other WebApp
Components

DDO

DDO

oWebOrderApi is a cRESTfulService

oApiCustomerHandler is a cRESTResourceHandler

~¢———| API Object

~¢—————| API Object

oApiOrdersHandler is a cRESTResourceHandler

DDO

<g—] API Object

DDO

|<¢——— API Object

oApilnventoryHandler is a cRESTResourceHandler

DDO

DDO < API Object

oApiVendorsHandler is a cRESTResourceHandler

DDO |«¢—————| API Object

DDO |<¢————— API Object

The API

Between these classes, we will be able to quickly build access to our
database on a kind of "maintenance view" level

A little like using DataBase Explorer, but all operations are mediated
by our data dictionaries and their business rules

The classes do support somewhat more control than that - fields can
be excluded or marked as read-only and interfaces can be set to
read-only or no-delete or no-update

For higher-level business operations you will still have to write your
own code - this should provide a good start however

2019

Demonstration!

Thank you!

Any Questions?

