
Getting Your Applications
Ready for DataFlex
NextGen

Presenter: Stephen W. Meeley

NextGen DataFlex

⚫ 64-bit capable
o 32-bit
o 64-bit

⚫ Fully Unicode
⚫ Only 1 product, no different versions
⚫ Current DataFlex continues in tandem (for a while)

o 32-bit, OEM
o Allows time for transition

We needed to get ready…

Code Cleanup Project - Goals

⚫ As the NextGen process progressed we’ve been
looking at old code and techniques and asking:
o What does this even do?
o Does it even work?
o Do people still use it?
o Oh no, we still use it!
o Can it be moved to DataFlex NextGen?
o Should it be moved to DataFlex NextGen?

Code Cleanup Project - Goals

⚫ We decided that we will migrate as much as we can but that we:
o Need a way to identify and discourage obsolete use
o We need to make sure we are not using these techniques in

our public code
⚫ We decided to start by cleaning our “public” code

o Packages and samples
⚫ This has been something on our to-do for quite a while but has

always been deferred
o Difficult to find (especially if you’re not looking ☺)

⚫ We decided to start this process for DataFlex 19.1

Code Cleanup Project - How
⚫ How we did it:

o We went through our product and decided what things should be
considered obsolete

o We built an automated warning system to help us find those things
o We modified the Studio to display warnings and make it easy to edit them
o We added compiler warnings throughout our code
o We chose to be pretty strict about this. When in doubt issue a warning

⚫ We cleaned up all warnings in our packages and samples
⚫ While we were at it we cleaned up:

o The formatting of all of our source code
o The comments in our code

Code Cleanup Project - Results

⚫ The results of this are in DataFlex 19.1
⚫ Once we built the system, we still had to do a lot of

tedious work to do
⚫ The good news is that once identified, it’s pretty easy

to improve the code
⚫ The even better news is that upon completion, it

feels really good to bring things up to date
⚫ And… this provides mechanism to stay up to date on

an ongoing basis

You need to get ready…

Bringing Code Cleanup to You

⚫ We felt that a robust compiler warning system will be
equally welcomed by our developers

⚫ You deserve the same strict warning system that we
imposed on our own code … with the following caveats:
o It can be disabled and enabled, so you can use it

when you are ready for it
o Your applications will run as before, despite the

warnings
o It is easy to use

⚫ You can do this in DataFlex 19.1

How You Can Use Compiler Warnings

⚫ Enable warnings for a project

⚫ Compile your application and see all the warnings

⚫ You can choose to fix as many or as few of the
warnings as you like

⚫ Your application runs the same as ever

⚫ You can even choose to use the
CompilerWarnings command yourself

Compiler Warnings

Compiler Warnings

Compiler Warning Implementation

⚫ New compiler command - #Warning

#Warning DFERR_COMP_WARNING_OBSOLETE_PACKAGE "ArrayPut.pkg is obsolete"

⚫ We added warnings throughout our packages and command
definitions (fmac)

⚫ We modified the Studio to display warnings
⚫ Warnings can be enabled disabled at the project level (and more)
⚫ You compile your application, you see warnings in the Studio

Demo

Warning Types

⚫ We have warnings for the following:
o Obsolete commands
o String commands vs. String functions
o Obsolete keywords (e.g. public, private, local)
o Obsolete classes (when instantiated as an object)
o Obsolete packages (when Used)
o Obsolete global functions (when called)
o Obsolete use of the old Type/End_Type structs
o Use of indicators
o “If” commands on a single line

Refining Compiler Warnings

⚫ If you have suggestions for other warnings let us know

⚫ Limitations of compiler warnings

o There are things we just can’t detect

o Our loose data type casting can make it hard to
detect bad data types at compile-time

o Our late binding object message system impossible to
detect obsolete object based methods

o There are techniques that are too hard to catch

Additional Tools to Help Clean Your Code!

⚫ While a compiler-based warning system has certain
limitations, there are some really nice code parsers out in the
community that will point out more obsolete techniques than
what the 19.1 Studio supplies…

o DFRefactor from Wil van Antwerpen
 https://projects.vdf-guidance.com/projects/dfrefactor

o DataFlex Code Parser / Explorer from Michael Salzlechner
 http://starzen.com/products/dataflex-tools/dataflex-source-

code-browser/

https://projects.vdf-guidance.com/projects/dfrefactor
http://starzen.com/products/dataflex-tools/dataflex-source-code-browser/

Additional changes that just might
(temporarily) break your application…

DFAllent and Removed Packages

⚫ We have removed a number of obsolete packages
from DFAllEnt.pkg

o These contain classes that are obsolete and have
been replaced with better alternatives.

o If your application compiles, you don’t need them
- congratulations

o If you get compiler errors
 Add them back with a “Use OldDfAllEnt.pkg”

Some Built in Commands Removed

⚫ Some commands have been moved out of FMAC

o These are commands that are so old, that no-
one should be using them

o Some don’t even work

o If you are using these:
 You will get a compiler error (command not found)

 You can add them back with a “Use
OldFmacCommands.pkg”

Getting Ready for DataFlex NextGen Now

Code Cleanup and DataFlex NextGen

⚫ Our goal is that all of our code is up to date before moving to
DataFlex NextGen

⚫ We hope you will want to do the same with your code
⚫ Most of your obsolete code will run fine in NextGen DataFlex

o These obsolete items are not necessarily going away
o Changes are going to be required when you move the

NextGen
o The more current your code, the easier this process will be
o We are providing you with the tools to do that now

Integers and Pointers in NextGen

⚫ Integers and Pointers
o In 64-bit, integers will still be 32-bit
o Pointers will be 64-bit or 32-Bit depending on

platform
o You cannot treat Integers and Pointers as

interchangeable

⚫ You need to review your code and make sure you use
Pointer or Address when working with memory pointers

Handles in NextGen
⚫ Handles

o In DataFlex the Handle type is used for:
 DataFlex Objects
 Windows Handles

⚫ Handles in 32-bit
o DataFlex Handles are 32 bits
o Windows Handles are 32 bits

⚫ Handles in 64-bit
o DataFlex Handles are always 32 bits
o Windows Handles are usually 32 bits in a 64 bit container (thank you Microsoft!)

 In almost every case the extra 32 bits are not used

⚫ Check your code and make sure you are not using Handles for pointers
o A handle is not a memory address

Windows APIs in NextGen
⚫ You must make sure your API definitions use the correct Windows datatypes

o Windows DLL calls (External_Function)
o Windows Notifications
o Windows Structs

 Windows Structs also have different padding rules for 32 and 64 bit application
 Examples can be seen in tWinStructs.pkg

⚫ If you are using obsolete the Type / End_Type commands and its surrounding
commands, we advise you switch over to Structs now

⚫ If you define additional Windows structs, you will need to double check them
⚫ You need to change Windows notifications to use the right datatype - that’s

what LongPtr is for

tWinStructs.txt

Strings in NextGen

⚫ Strings and Unicode
o In DataFlex strings have been used to manage character strings

and bytes of memory
o With Unicode this is not the same thing (bytes vs. characters)
o Our String function library is going to be extended and modified to

handle string byte and character usage

⚫ If you are using obsolete string commands, we advise you to switch
these to string functions now

⚫ Check your code for string usage and start identifying places where you
are using strings to manipulate memory

All of this can be done now…

⚫ We’ve already made these changes in DataFlex 19.1

⚫ You can start doing the same in your applications

⚫ We will be providing specific changes and guidelines
as we move forward

⚫ We will get you there!

The Virtues of Being Up to Date

⚫ There is a big overhead in constantly updating to the latest
o Trust us on this one – we feel your pain

⚫ Can you fall back to the “If it’s not broke, don’t fix it” strategy?
o This strategy is no longer viable in the 21st Century

⚫ Do everything you can to keep your DataFlex applications up to date
o You get all the latest new features
o We will keep your application working in an ever changing environment
o We’ll do our best to help you (but it starts with you)

⚫ When DataFlex NextGen is here, will you be ready?

Thank you!

Are there any questions?

