
DataFlex NextGen

Presenter: Harm Wibier

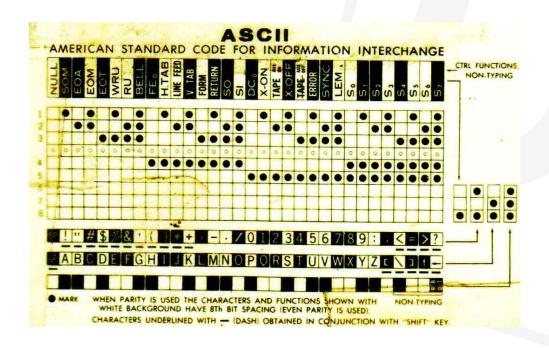
SYNERGY 2019 CRUISING TO NEW HORIZONS

			. <u>—</u>							
(j	O	D	W	к	O	U	G	Н	- 1

(No Model.)

11 Sheets-Sheet 6.

J. M. E. BAUDOT.


PRINTING TELEGRAPH.

No. 388,244.

Patented Aug. 21, 1888.

Fig. 24.

INVENTOR: <u>Sean Maurice Émile Baudot</u>

Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char
0	0000 0000	00	[NUL]	32	0010 0000	20	space	64	0100 0000	40	0	96	0110 0000	60	`
1	0000 0001	01	[SOH]	33	0010 0001	21	!	65	0100 0001	41	A	97	0110 0001	61	a
2	0000 0010	02	[STX]	34	0010 0010	22	11	66	0100 0010	42	В	98	0110 0010	62	b
3	0000 0011	03	[ETX]	35	0010 0011	23	#	67	0100 0011	43	С	99	0110 0011	63	С
4	0000 0100	04	[EOT]	36	0010 0100	24	\$	68	0100 0100	44	D	100	0110 0100	64	d
5	0000 0101	05	[ENQ]	37	0010 0101	25	8	69	0100 0101	45	E	101	0110 0101	65	е
6	0000 0110	06	[ACK]	38	0010 0110	26	£	70	0100 0110	46	F	102	0110 0110	66	f
7	0000 0111	07	[BEL]	39	0010 0111	27	•	71	0100 0111	47	G	103	0110 0111	67	g
8	0000 1000	08	[BS]	40	0010 1000	28	(72	0100 1000	48	н	104	0110 1000	68	h
9	0000 1001	09	[TAB]	41	0010 1001	29)	73	0100 1001	49	I	105	0110 1001	69	i
10	0000 1010	0A	[LF]	42	0010 1010	2A	*	74	0100 1010	4A	J	106	0110 1010	6A	j
11	0000 1011	0в	[VT]	43	0010 1011	2B	+	75	0100 1011	4B	K	107	0110 1011	6B	k
12	0000 1100	0C	[FF]	44	0010 1100	2C	,	76	0100 1100	4C	L	108	0110 1100	6C	1
13	0000 1101	0D	[CR]	45	0010 1101	2D	-	77	0100 1101	4D	M	109	0110 1101	6D	m
14	0000 1110	0E	[so]	46	0010 1110	2E		78	0100 1110	4E	N	110	0110 1110	6E	n
15	0000 1111	0F	[SI]	47	0010 1111	2F	/	79	0100 1111	4 F	0	111	0110 1111	6 F	0
16	0001 0000	10	[DLE]	48	0011 0000	30	0	80	0101 0000	50	P	112	0111 0000	70	p
17	0001 0001	11	[DC1]	49	0011 0001	31	1	81	0101 0001	51	Q	113	0111 0001	71	q
18	0001 0010	12	[DC2]	50	0011 0010	32	2	82	0101 0010	52	R	114	0111 0010	72	r
19	0001 0011	13	[DC3]	51	0011 0011	33	3	83	0101 0011	53	s	115	0111 0011	73	s
20	0001 0100	14	[DC4]	52	0011 0100	34	4	84	0101 0100	54	T	116	0111 0100	74	t
21	0001 0101	15	[NAK]	53	0011 0101	35	5	85	0101 0101	55	υ	117	0111 0101	75	u
22	0001 0110	16	[SYN]	54	0011 0110	36	6	86	0101 0110	56	v	118	0111 0110	76	v
23	0001 0111	17	[ETB]	55	0011 0111	37	7	87	0101 0111	57	W	119	0111 0111	77	w
24	0001 1000	18	[CAN]	56	0011 1000	38	8	88	0101 1000	58	X	120	0111 1000	78	x
25	0001 1001	19	[EM]	57	0011 1001	39	9	89	0101 1001	59	Y	121	0111 1001	79	У
26	0001 1010	1 A	[SUB]	58	0011 1010	3 A	:	90	0101 1010	5 A	\mathbf{z}	122	0111 1010	7 A	z
27	0001 1011	1B	[ESC]	59	0011 1011	3B	;	91	0101 1011	5B	[123	0111 1011	7B	{
28	0001 1100	1C	[FS]	60	0011 1100	3C	<	92	0101 1100	5C	\	124	0111 1100	7C	1
29	0001 1101	1 D	[GS]	61	0011 1101	3D	=	93	0101 1101	5D]	125	0111 1101	7D	}
30	0001 1110	1E	[RS]	62	0011 1110	3 E	>	94	0101 1110	5 E	^	126	0111 1110	7E	~
31	0001 1111	1F	[US]	63	0011 1111	3 F	?	95	0101 1111	5 F		127	0111 1111	7 F	[DEL

ASCII

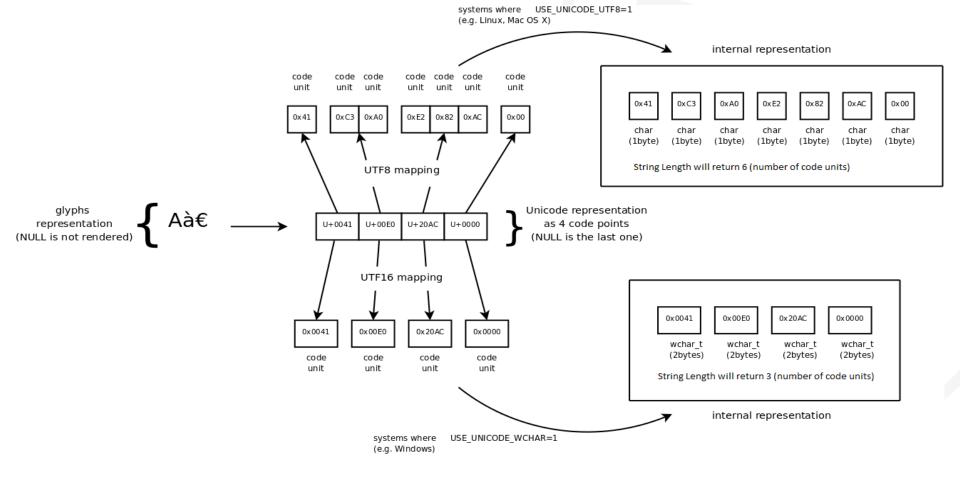
- First created in 1963
 - American Standards Institute
 - (in reality IBM and AT&T)
 - The ASCII-67 version is the one that stuck
 - First one with lowercase characters
- 7 bits per character
 - 128 characters

Codepages

- Started around 1985
 - Used the 8th bit
 - Codepages for different languages
 - 128 characters match ASCII
 - OEM (IBM PC / DOS)
 - ANSI (Windows)
 - ISO-8859-*

Unicode

- Unicode Consortium started in 1991
 - Unicode 1.0
 - 16-bit (UCS-2)
 - Unicode 2.0
 - 21-bit (UTF-8, UTF-16, UTF-32)
 - UTF-8 & UTF16 are variable length encodings


Unicode makes things easier?

- Different encodings
 - o UCS-2
 - o UTF-8
 - o UTF-16
 - UTF-16BE
 - UTF-32

- Also with UTF-16, even with UTF-32
- Exception is UCS-2 which is antiquated technology
- Complicates string functions
- Unicode is pretty much just the set of characters

SYNERGY 2019 CRUISING TO NEW HORIZONS

Windows

- Started with ANSI (8-bit)
 - Support for OEM codepages
- Moved to UCS-2 (16-bit)
 - New widestring API's (or double byte)
- Moved to UTF-16 (16-bit or more)
 - Changed their double byte API's

DataFlex today

- Strings in DataFlex are OEM
 - We never changed to ANSI
- Conversions are done for most Window API calls
- DataFlex uses the single byte Windows API's

Project NextGen

Codename: NextGen

- Work started 2,5 years ago
 - Planning started way before that
- Dedicated resources were hired for the project

- Goal is to make DataFlex:
 - Fully Unicode
 - 64-bit capable

DataFlex strings will be UTF-8

- Why?
 - UTF-8 provides backwards compatibility
 - First 128 characters match ASCII
 - The web is already UTF-8
 - UTF-8 is the best encoding
 - SQL Server 2019 will support UTF-8

Microsoft is experimenting with UTF-8 as default 'code-page'

Source will become UTF-8

- Source files will be stored as UTF-8
 - Likely with a BOM, so the compiler can recognize old files that are still OEM
- Literals will support UTF-8
- Names will only support ASCII characters

Demo...

Database in NextGen

- SQL will be the expected database
- Possibilities for the DataFlex Embedded Database:
 - A Unicode version of the Embedded Database
 - No backwards compatibility
 - An OEM to Unicode data conversion utility would be provided
 - Continued support as OEM (without Unicode)
 - Collating sequence will be a challenge
 - Likely still incompatible with previous (32-bit OEM) Embedded Database
 - No embedded database at all

What code changes are needed?

- Convert to the wide character windows API's
 - Since Windows is UTF-16 a conversion will be needed
 - Not using the W functions will work in a lot of cases, but non ASCII characters will display incorrectly
- Remove / change all conversions
 - ToOEM / ToANSI indicates that something needs to change
- Check string manipulations
 - Bytes do not equal code points any more
- Not a line of code changed in Order Entry

Status

- Most native components are converted
 - Runtime, compiler, CDS
- Studio is mostly converted
- String functions are being implemented right now
- Open items
 - Embedded Database
 - Connectivity Kits
 - Tools (Database Explorer, Database Builder, ...)
- Progress is steady...

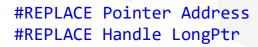
What is 64-bit?

- The registry size of the processor
- Length of a memory address
- Since 1995 we used 32-bits
 - Addresses up to 4GB of memory
- Since 2001 64-bit versions of windows were available
 - Can address a lot more gigabytes of memory...
 - Not everyone moved to 64-bit directly
 - 64-bit windows can run 32-bit software

Why do I need 64-bit?

- Because the world is moving towards 64-bit
- Communicate with other 64-bit software
- To be more competitive

64-bit capable


- You will choose per project between 64-bit and 32-bit
- We expect 32-bit to be around for a while
 - A 64-bit application cannot use 32-bit DLLs
 - This includes COM components
 - All third party components you use need to be 64-bit
 - You need time to migrate your code

New projects should be 64-bit by default

Language changes

- New LongPtr type
 - Integer type that is the same size of a pointer
 - 32-bit on 32-bit and 64-bit on 64-bit
- Integer stays 32-bit
- Pointer is now an Address
 - Used to be an integer
- Handle becomes LongPtr
- New compiler switch

```
#REPLACE Pointer Integer #REPLACE Handle Integer
```


#IFDEF IS\$WIN64

#ELSE

#ENDIF

Package changes

- Various Integer to LongPtr changes
 - External API's
 - Window messages
- Several Integer to Address changes
 - Invalid usage of Integer
 - Bad habits since the beginning of DataFlex ©

Internal changes

- Lots of changes in the C codebase of the runtime
 - Pointers were passed as integer a lot...
- Multiple expression evaluator changes
 - Caused by the new LongPtr type
- Brand new linker
 - The part of the compiler producing the executable
 - Already in 19.1 (embed manifest files!)
- Converted all dependencies

Demo..

Converting your application...

- All your third party dependencies need to be 64-bit
 - All DLL's / COM controls
 - COM API's might be slightly different on 64-bit
- Changes might be needed in your code
 - No pointers values in integers any more!
 - External API's might require the use of LongPtr
 - Most of these are in more low level code
- Not a line of code changed in Order Entry
- With 19.1 we start helping you prepare
 - See Stephen's "Getting your applications ready for DataFlex NextGen"

The NextGen environment...

- All tools will be 64-bit (Studio, DB Explorer, ..)
 - Also builds and debugs 32-bit applications
- WebApp Server will be 64-bit
 - Also runs 32-bit applications
- Client installer will both 32-bit and 64-bit
 - Will work on 32-bit only machines

Status

- Most of the work is done
- We have a pretty stable environment
- Lots of testing is being done
 - Most current work comes out of test results

Moving forward...

The current DataFlex...

- Will be continued to be supported for a while
 - Based on the current codebase
 - New features will be backported
 - So for a while there will be 2 versions DataFlex
- Gives the new DataFlex time to mature
 - Experience with converting will grow in the community
- Gives you more time to migrate

When?

- After the 19.1 the focus of the entire team will shift to NextGen
 - It will become our default platform for developing new features
 - The entire team will start testing and reporting issues
- First technical previews should become available later this year...
- We are shooting for a first release the first quarter of 2020...

SYNERGY 2019 CRUISING TO NEW HORIZONS

Thank you for your time!

I'll be around for any questions you might have...