SYNERGY 2015

SEATTLE, WA, USA

A DataFlex Web Framework Extension Project

Presented by: Sture Andersen

Data/Access worLowioe

Good afternoon.

[want start by saying that [am very excited about the
direction of DataFlex at this moment.

We saw it several times during yesterdays presentations
that you can generate mobile applications in minutes.

And I can confirm that.

On the night alpha-2 was released I read the What's New,
Mobile section in the help file (takes a while, get coffee) and
had a working mobile version of our time billing view within
a couple of hours. With two “selects” and one “zoom”. And a
dashboard.

Getting our stuff on mobile devices like that will increase the
exposure and the usability of our applications by a large
factor.

I'm looking forward to seeing where that will bring us.
Why do need a new Web Framework Extension?

And by “we”, | mean my own company, Sture ApS, and Front-
IT that is run by Klaus Bethelsen and Charlotte Grgnvold. We
have experience in developing web applications for
customers. And we all agree that it is a pleasure to work with
DataFlex for these projects.

So we decided it was time to create a common library,
AppWrap, to be used as a basis for new projects.

[t should:

e add support for multi-tenancy applications (the ability
to run more customers on the same database). I am
happy to say that we have a solid solution for this.

e add support for multi lingual interfaces so that each
user can use a different language.

We have not achieved that yet, although some
techniques have been identified.

e canonise some ad-hoc techniques that we developed
during the course of the last year. Server side variables,
seeding views with records.

Some of these techniques tend to be made redundant
with each new version of dataflex. But there is still one
or two left.

Since both our companies needs a new hour billing systems,
we might as well develop that on-the-way to test it all out.
We have named it Trex to resemble the sound of “time
registration”.

So, AppWrap is the name of the library that we use for new
systems and Trex is the name of our hour billing system

Goals to be achieved by doing this:

e We will ourselves be using one of the systems similar to
what we are trying to sell to customers and developers.

e If it turns good, we will make the AppWrap library
available to the community. Either for direct use or for
cherry-picking useful techniques .

e With the ‘mobility’ of alpha-2 it also means that we will
always have an application at hand to show. This will
hopefully initiate many interesting conversations with
potential customers.

Anyway, that’s why we need ‘a new Library’. And the library
is called AppWrap.

First though:

Primary key strategies:

1. Data bearing (initials of an employee, license plate of a car, e-mail address of a person)
2. Good old auto-increment

3. Good new auto-increment (AppWrap implements this)

4. UUIDs (aka. GUIDs), looks like this: {§ES9F1DD-1FBE-11D@-8FF2-@0ABD10038BC}

5. SQL Identity Columns for MSSQL and DB2

Trex runs on the embedded database and uses UUID's for key fields.

The AppWrap library can use 3, 4 and 5 UUID’s or 'SQL indentity columns'.

SYNERGY 2015 | DataAccess WORLDWIDE

John Tuohy talked some about this and I'll basically repeat
what he said.

We have data bearing keys, that the user enters himself.

We have good old auto-increment which means that we have
to create an extra field in a system table somewhere.

We have a new auto-increment that AppWrap assigns by
opening all the tables an extra time in read-only-mode.

[t reads the highest number currently used and adds one for
new records. This by the way, is a bad strategy if a guarantee
is required, that no ID is ever reused.

We have UUIDs that are good because they do not require an
extra server round-trip upon creation.

As John said yesterday, there may theoretically be a tree-
balancing problem with them, but that remains to be seen.

And they are rather bulky. But who cares.

For Microsoft SQL and DB2 we have the new feature in 18.1
called SQL Identity Columns. This is actually the best
strategy because it is compact, and because it does not re-
use numbers upon deletion (I suppose).

Trex uses the UUID strategy because it needs to be able to
run on the embedded database during development.

AppWrap can be used with any of these strategies but in the
context of multi-tenancy only strategy 3, 4, and 5 can be
used.

How to set it up (key fields)

Use AppWrap‘\cawDatabaseFoundation.pkg

Open TRCompany // Open all tables
Open TRDepartment

Object oTrexDatabaseFoundation is a cawDatabaseFoundation

Set FoundationColumnType File Field TRCompany.Company_ UUID to DBFCT_KeyFieldUUID
Set FoundationColumnType File Field TRDepartment.Department_UUID to DBFCT_KeyFielduUID
End_Object

Use AppWrap\Classes‘\awDataDictionary.pkg
Open TRCompany

Class cTRCompanyDataDictionary is a awDataDictionary
Procedure Construct Object
Forward Send Construct_Object
Set Main_File to TRCompany.File Number
Set Key Field State Field TRCompany.Company UUID to True
{all the usugl stuff}
End_Procedure
End_Class

SYNERGY 2015 | Data/Access WORLDWIDE

A awDataDictionary does not set any properties behind your
back. Therefore the “Set Key_Field_State ... to True” is
needed even if the class has already the information to set it
up itself.

With that aside,

“Multitenancy refers to a principle in
software architecture where a single
instance of the software runs on a
server, serving multiple tenants.

Commentators regard multitenancy as
an important feature of cloud

computing.”

Wikipedia

SYNERGY 2015 | DataAccess WORLDWIDE

With the AppWrap strategy for multitenancy, this means
putting the data of multiple tenants (or: data owners as we
call them) into the same table and then trust the application
logic to keep these data sets apart.

Trex data model

Trex data model

Database relationships
as-accessed-via
C:/VDF_Workspaces/StureAps/Trex181/Trex181.sws

\ / \ 19-Mar-2015@17:08

TRProjectMNode TRDepartment TREmployee AWwebUser

AN TAN

TRTicket TRProjectResource TRHourBiling TREmployeeReminder

TRCompany TRPerson

SYNERGY 2015 | DataAccess WORLDWIDE

We can see that Companies have Persons as Employees and
Employees can bill hours on Projects and so forth.

Each of these tables have a single-column unique index for
primary key (as we just saw) based on UUID type values.

The Company table contains both the company that writes
the invoices (we call that the mother company) and then
also all the customers of that company.

Trex knows which company is the mother company by
storing its ID in a “system table” that can not be seen in this
diagram

The other thing not evident from the diagram is the full
meaning of the AWWebUser table.

Whenever an application needs to identify a logged-in
webuser with an entity in the “data bearing” tables (in this
case: the Person table), we introduce an extra table that
holds that necessary relation - as well as a user name and
password to be used for login.

This is the job of the AWWebUser table.

But the Trex system (or rather: “an AppWrap application”)
also has the normal WebAppUser and WebAppSession tables
to control the login and session handling.

These are created automatically by the Studio and the
WebAppUser table also contains login name and password.

So how do they co-exist?

The datadictionary of the AWWebUser table takes care of
synchronizing the content between itself and WebAppUser
table.

So, when a login is performed the user-name and password
is first checked against the WebAppUser table and then - if
correct - against the AWWebUser table. Thereby identifying
person, employee and company.

This creates a galvanic separation data-wise, between the
login housekeeping and the logic that determines who-you-
are-in-the-context-of-the-application.

We want that.

Now, how do one enable this database to run multiple
tenantly?

Well, one adds a DataOwner column to each table.

With the AppWrap library, a numeric type is used for
dataowner columns.

Now, here comes the thing.

First realize that a primary key - because its value has no
‘meaning’ - will only ever be used for find EQ operations.
That is, when a ‘relate’ is executed on a child record.

We will not use the primary index for scanning a table for a
sequence of records, because the order will be completely
arbitrary (and therefore un-optimizable in any way). No
meaningful scan can be performed.

Because we want to _avoid_ having to use the dataowner
column for setting up relations, we require that the primary
key be without the this column.

This is the reason why the primary key remains the same,
even if we now use the table in a multitenancy environment.

Secondly, every index other than the primary index _will_ be
used for scans. And therefore, to remain efficient - in a
multitenant-environment - it _must_have the DataOwner
column as its first segment.

Take a moment to convince yourself of these 2 facts.

Lets take a look at the HourBilling table of the Trex

system.
ﬁ VDFXRay 2.54 [C:\VDF Workspaces\StureAps\Trex181\Trex181.sws] - [Table definition TRHourBilling (Trex - Hour billings)] [= | =l ﬂ—hj
Eile View Functions Help RandD -8 x
Columns: butes: Last column: | Native length v Indices:
Column name Type Len Offs Idx Relatesto Nati... - Segment uU/C Dsc -
1 DataOwner_Number NUM 100 Index.1
| 2HourBilling UUID m-a-—- HourBilling_UUID O 8
3 ProjectNode_UUID ASC TRProjectNode.Proj 38
4 Employee_UUID ASC 38 822 TREmployee Emplo 38 Index.2
5 Opt_Ticket_UUID ASC 38 120 38 DataOwner_Number O O
6 WorkDate DAT & 158 2 3 ProjectNode_UUID O O =
7 TimeStart ASC 5 1612 5 Employee_UUID Lad] O
8 TimeStop ASC 5 166 5 WorkDate mH | E
9 Hours NUM 4.2 171 3 TimeStart [} O
10 WorkDescription TXT 256 174 256
11 ParentCompanyUUID ASC 38 4306 38 Index.3 i
DataOwner_Number | [
Employee_UUID L B L
WorkDate | O
TimeStart [} |
Index.4

DataOwner_Number
ProjectNode_UUID
WorkDate

TimeStart
HourBilling_UUID

EEEEE
|| | (]| [0

Index.5
DataOwner_MNumber
T | WorkDate

Explore table Filter columns: [| Replace overlap segments

OO
o0

Primary key is the HourBilling_UUID column.

All other indices have the DataOwner as the first segment.

Since we always know which DataOwner we are working
with this is _exactly_ as efficient as it would have been, had it
not been a multitenant table.

Not a single unnecessary find is performed when following
this strategy.

Note also, that the relations to ProjectNode and Employee
are based on their single segment primary keys.

How to set up multi tenancy in the DatabaseFoundation

All tables of the system are opened in the database-
foundation object. But the slide had only room for the
Company table:

How to set it up (multi tenancy)

Use AppWrap\cawDatabaseFoundation.pkg

Open TRCompany // Open all tables
Open TRDepartment

Object oTrexDatabaseFoundation is a cawDatabaseFoundation

Set FoundationColumnType File_Field TRCompany.Company UUID to DBFCT_KeyFieldUUID
Set FoundationColumnType File Field TRCompany.DataOwner_ Number +to DBFCT_DataOwner
End_Object

Use AppWrap\Classes\awDataDictionary.pkg
Open TRCompany

Class cTRCompanyDataDictionary is a awDataDictionary
Procedure Construct_Object
Forward Send Construct_Object
Set Main_File to TRCompany.File Number
Set Key Field State Field TRCompany.Company UUID to True
Set Field Option Field TRCompany.DataOwner_Number DD_NOPUT to True
{all the usual stuff}
End_Procedure
End_Class

SYNERGY 2015 | DataAccess WORLDWIDE

A quick tour of Trex

e Showed some features of Trex to showcase 10
datadictionaries doing seemles multitenancy-ballets.

e And that multiple owners could not access each others
data.

e No reference whatsoever to the fact that we're running
in multitenancy in the source code for even a very
complex view. Also not so in the source for the
datadictionary classes.

Now, this multitenancy abstraction operates with two kinds
of ‘elevated’ user types:

DataOwner-user-type: Who is allowed to create other users
for that data owner.

Site Administrator: Is allowed disable and enable data
owners.

In addition, AppWrap has a user-rights system that I will not
show in detail, but common to all of this is the notion that
rights may not necessarily be assigned at login. But once the
session is going, the user can elevate him or herself into
having these ‘extra’ rights (by reentering their password).

Creating a new data owner

{Showed a sequence of login- and setup-type dialogs to set
up a new data owner, ready for use}

The DataOwner table

E VDFXRay 2.54 [CA\VDF Workspaces\StureAps\Trex181\Trex181.sws] - [Table definition AWDataOwner (AW - Data Owner)] l = |[E] ﬂ_hj
File View Functions Help RandD -8 x
Columns: butes: Last column: | Native length = Indices:
Column name Type Len Offs Idx Relatesto Nati... B Segment U/C Dsc =
| LDataOwner Number Nom oo | i | | Index.1
2 DataOwner_Name ASC 40 62 40 DataOwner Number O O
3 DataOwner_URL ASC 40 46 40
4 Deactivated NUM 20 86 i Index.2
5 Mother_Company_UUID ASC 38 87 38 DataOwner_Name ¥ [}
Explore table Filter columns: ["] Replace overlap segments

e The names of the data owners are stored in this table

e For Trex, it also stores the information about which
company is the ‘mother company’ of a data owner.

e So it acts as our ‘system table’, since it has exactly one
record per data owner.

How simple it is

DD augmentation that makes everything display correctly.

Procedure Constrain
Integer iTable
tDBFoundationTable stTable

Forward Send Constrain

Get Main_File to iTable
Get FoundationTable of ghoDatabaseFoundation iTabkle to stTable

If (stTable.iDataOwnerColumn<>0) Begin

Veonstrain iTable stTable.iDataOwnerColumn EQ giCurrentDataCwner
End
End Procedure

giCurrentDataOwner is set at the very beginning of each request in Function ValidateSession of
the SessionManager object.

SYNERGY 2015 | DataAccess WORLDWIDE

This shows how simple this multitenancy-mechanism really
is.

This is all it takes to make that complex view - you saw

before - display correctly and at speed and never navigate
to a record of another data owner.

[am impressed.

There are additional augmentations to ensure that the DD
does not save or delete records of other data owners . They
are equally simple.

Multitenancy recap so far:

Multitenancy tables have a DataOwner_Number column.
e Tables are indexed uniquely on a single auto-generated ID column

¢ Information about which columns are DataOwner or auto ID’s is setup
via a global ‘database foundation’ object.

e All DataDictionaries must be based on the awDataDictionary class that
then queries the ‘foundation’ object.

e The data dictionaries hereafter take care of everything.

SYNERGY 2015 | Data/Access WORLDWIDE

Some extra notes

Some extra notes

e |f we run the system on an SQL backend Trex will automatically set the
global DF_FILE_SQL_FILTER for each request.

e In any event, using the TableQuery package to find records will
automatically add constraints on data owner

e These other foundation column types have also been implemented:
DBFCT_CreateTime, DBFCT_UpdateTime (and some more).

SYNERGY 2015 | DataAccess WORLDWIDE

Some (externally implemented) check rutines.

Once a multitenant system is running, you would like to do
things like:

e Make a list of data owners currently in the system

e Import and export dataowner data

e Check for illegal relations (one dataowner to another)
e Delete a dataowner all together

These functions have been implemented in a general
purpose workspace utility called VDFXray.

Question: How does VDFXray know about which columns
have been setup for dataowner-id?

Answer: The first time an executable runs after it has been
updated (by the compiler or by copying a new exe file into a
production environment) it serializes the
DatabaseFoundation object and writes it to a file.

This file is automatically picked up by VDFXray when a
workspace is opened. Therefore it has the information
needed to perform the required operations.

(

Theoretically, a routine could be added to VDFXray that
would generate a “clean” version of the WebAppUser table
(which is the one that is synchronized with the AWWebUser
table)

)

Multi-tenancy end

The presented strategy has proved stable so far, and as you
have seen, it draws precious little attention from the
developer.

Thank you for your time.
Sture Andersen
Synergy 2015

