Using Web APIs In
DataFlex

Mike Peat, Unicorn InterGlobal Limited
Synergy 2015, Seattle

Web APIs

e Generally:
o Use REST over HTTP, thus receiving a lot
of their input in the URL itself
o Use JSON for accepting and returning
complex data
o Require some kind of authentication

REST

Representational State Transfer
Alternative to SOAP-based web services
Generally done over HTTP

Uses a range of HT TP verbs:

o GET (retrieves stuff, but doesn't change anything)
POST (adds stuff)

PUT (updates stuff)

PATCH (amends stuff)

DELETE (I'm sure you can work that one out yourself)

©)
©)
©)
@)

POST vs PUT vs PATCH

e You might ask what are the differences
between these three verbs

e I'm sure somebody knows, but | am not
going to try to explain

e And | don't care, because | am using these
APls, not designing them

e | just use what the designers specify

Verbs

e GET and POST are familiar from the

DataFlex cHttpTransfer class

o HttpGetRequest
o HttpPostRequest

e DataFlex claims it also does PUT (I never
had)

e \We had no mechanism for DELETE and
PATCH

New for DataFlex 18.1

e John Tuohy kindly added a new function into
the cHttpTransfer class

e HttpVerbAddrRequest

e It allows you to specify which HTTP verb you
want to use

e Uses the Address and Length of the required
content (if any - use zeros if there is none)

HttpVerbAddrRequest function

Get HttpVerbAddrRequest {path} {address} {length} ;
{is-file} {HTTP-verb} to {integer}

String sData

Integer iOK

Move "some stuff (serialised JSON usually)" to sData

Get HttpVerbAddrRequest "api/v1.0/me/sendmail” ;
(AddressOf(sData)) (Length(sData)) False "POST" ;

to iIOK

JSON

e Passing complex data to/from APIs

e Create a "struct" conforming to the structure
of the data being passed (example)

e Compile your program

e Use Sture Andersen's excellent VDF XRay
tool to generate struct handler packages by
scanning the output .PRN file

https://msdn.microsoft.com/en-us/office/office365/api/mail-rest-operations#MessageoperationsSendmessages

Parsing and serialising JSON

e "Use" the packages generated by VDF XRay
(generally you only have to use the outer
struct one, as that will "Use" the inner ones)

e Call StringToDoc, then JsonToStruct to
parse received JSON strings into struct
variables

e Call StructTodson, then DocToString to
serialise struct variables to JSON strings

Microsoft Office 365

e Range of APls:
o Outlook:
m Mall
m Calendar
m Contacts
o SharePoint:
m Files

e The two categories work somewhat
differently

e (There is also a "Discovery" service)

Office 365 Mail API operations

Get messages GET

Send message POST
Reply to message POST
Forward message POST
Update message PATCH
Delete message DELETE
Move/Copy message POST

Get attachments GET
Create attachment POST
Delete attachment DELETE
Get folders GET

Create folder POST

Update folder PATCH
Delete folder DELETE
Move/Copy folder POST

Office 365 Contacts API operations

Get contacts GET
Create contact POST
Update contact PATCH
Delete contact DELETE
Get contact folders GET

Office 365 Calendar API operations

Get events GET

Create event POST

Update event PATCH
Delete event DELETE

Get attachments GET
Create attachment POST
Delete attachment DELETE

Get calendars GET

Create calendar POST

Update calendar PATCH
Delete calendar DELETE

Get calendar groups GET
Create calendar group POST
Update calendar group PATCH
Delete calendar group DELETE

Office 365 Files APl operations

Create folder PUT

Get folder props GET

List folder contents GET
Update folder props PATCH
Copy folder POST

Delete folder DELETE
Create/update file PUT
Download file GET

Get file properties GET
Update file props PATCH
Copy file POST

Delete file DELETE

Get drive props GET

Authentication

e These APIs (in some cases) support two
mechanisms for authenticating users
o User ID and Password
o OAuth 2.0

e (In the case of the Office 365 Files APl only OAuth2 is
supported... at least so far as | can tell)

User ID and Password

e Simple to use

e Just set the psUsername and psPassword
properties of your HttpTransfer object

e Microsoft say it is OK for testing, but not
production

e The problem is that at some point the user
has to give your application their credentials

OAuth2

e Is complicated!!! (especially the MS way)
e Basically 4 steps:

O

O

Register your application with the provider

Make a call that invites the user to log in and allow
your app access to their data

Get an access token based on that consent

Use that token in your app's requests for data

Microsoft OAuth2

e Get an Office 365 Developer account

e Go into Microsoft Azure Portal and log in

e Find Active Directory (AAD: Azure Active
Directory)

e Navigate to: your-company — Applications
— Add — Set up its properties (URI,
Callback URL)

https://manage.windowsazure.com

MS OAuth2 continued...

e (Go into "Configure”

e Get the Client ID for the application

e Create a key (aka "client secret"... remember
that: it is not obvious those are the same
thing. And copy that key - you won't see it
again!)

e Add application permissions and delegated
permissions

MS OAuth2 continued...

e In JavaScript, we open the Microsoft OAuth2
URL in a new browser window, passing it a
whole lot of stuff in the query string

e If the user is not logged in to their Microsoft
365 account it will show them a login screen
to do that

e Then they will be presented with a screen
asking them to give your app access

https://login.windows.net/common/oauth2/authorize
https://login.windows.net/common/oauth2/authorize

MS OAuth2 continued...

If they grant that, Microsoft redirects them to
your callback URL

We wait in a JavaScript timer loop looking at
the window's URL until it changes to that
Then we capture that full URL

Parse the information from that query string
Get the authorisation code out of that

MS OAuth2 continued...

Use the authorisation code to request an
access token

(I couldn't get this to work in JavaScript,
because of cross-site scripting restrictions,
so | had to do this step back in DataFlex)
Use that access token in the "Authorization’
HTTP header of your API requests

Microsoft JSON oddities

Microsoft's JSON has some awkward names
Often starting "@odata." (example)

Such as "@odata.context" or "@odata.id

We can't have struct element names which
match those exactly, so we need to replace
them: with "odata " on the way in and
reverse the procedure on the way out

https://msdn.microsoft.com/office/office365/APi/files-rest-operations#ListFolderContents

Demonstration

Other APIs

e Microsoft are not the only player in the Web
API| space (although they have a lot more
than | have talked about so far)

e The 800-pound gorilla is Google (Amazon is
big too, but in a different way)

e No point in even starting to list Google's
range of APIs (see here)

https://developers.google.com/apis-explorer/#p/

Google Web APIs

e Google APIs only support OAuth 2.0
authentication

e Fortunately their mechanism is much simpler
than Microsoft's

e Sign up for a Google Developer account and
go to the Developer Console

https://console.developers.google.com/project

Google OAuth 2.0

e Create a new Client ID for your app with a
redirect URL and where your JavaScript will
be

e Copy the client ID and configure the APIs it
wants to access

e Configure a consent screen (optional)

Google OAuth 2.0 continued

Call the Google OAuth2 endpoint in a new
browser window, specifying the "scopes”
your app wants to access

Parse the redirect URL that is taken to when
the user gives consent

Extract and store the access token

Use that token in the query string of your API
HTTP requests

Demonstration

That was...

The result of a single call

To one operation

Of one Google API

Then organising and using the data coming
back from that

Then using the URLSs of the documents to
access them

So far...

e | have only dipped a toe in the water of the
ocean of available APIs (a large set from
Microsoft - a vast array from Google... and
there are others too)

e There really seems to be enormous potential
for things you can do with these

https://msdn.microsoft.com/library

End of Presentation

Thank you for watching/listening

