
Using Web APIs in
DataFlex

Mike Peat, Unicorn InterGlobal Limited
Synergy 2015, Seattle

Web APIs

● Generally:
○ Use REST over HTTP, thus receiving a lot

of their input in the URL itself
○ Use JSON for accepting and returning

complex data
○ Require some kind of authentication

REST

● Representational State Transfer
● Alternative to SOAP-based web services
● Generally done over HTTP
● Uses a range of HTTP verbs:

○ GET (retrieves stuff, but doesn't change anything)
○ POST (adds stuff)
○ PUT (updates stuff)
○ PATCH (amends stuff)
○ DELETE (I'm sure you can work that one out yourself)

POST vs PUT vs PATCH

● You might ask what are the differences
between these three verbs

● I'm sure somebody knows, but I am not
going to try to explain

● And I don't care, because I am using these
APIs, not designing them

● I just use what the designers specify

Verbs

● GET and POST are familiar from the
DataFlex cHttpTransfer class
○ HttpGetRequest
○ HttpPostRequest

● DataFlex claims it also does PUT (I never
had)

● We had no mechanism for DELETE and
PATCH

New for DataFlex 18.1

● John Tuohy kindly added a new function into
the cHttpTransfer class

● HttpVerbAddrRequest
● It allows you to specify which HTTP verb you

want to use
● Uses the Address and Length of the required

content (if any - use zeros if there is none)

HttpVerbAddrRequest function
Get HttpVerbAddrRequest {path} {address} {length} ;

{is-file} {HTTP-verb} to {integer}
String sData
Integer iOK
Move "some stuff (serialised JSON usually)" to sData
Get HttpVerbAddrRequest "api/v1.0/me/sendmail" ;

(AddressOf(sData)) (Length(sData)) False "POST" ;
to iOK

JSON

● Passing complex data to/from APIs
● Create a "struct" conforming to the structure

of the data being passed (example)
● Compile your program
● Use Sture Andersen's excellent VDF XRay

tool to generate struct handler packages by
scanning the output .PRN file

https://msdn.microsoft.com/en-us/office/office365/api/mail-rest-operations#MessageoperationsSendmessages

Parsing and serialising JSON

● "Use" the packages generated by VDF XRay
(generally you only have to use the outer
struct one, as that will "Use" the inner ones)

● Call StringToDoc, then JsonToStruct to
parse received JSON strings into struct
variables

● Call StructToJson, then DocToString to
serialise struct variables to JSON strings

Microsoft Office 365
● Range of APIs:

○ Outlook:
■ Mail
■ Calendar
■ Contacts

○ SharePoint:
■ Files

● The two categories work somewhat
differently

● (There is also a "Discovery" service)

Office 365 Mail API operations
● Get messages GET
● Send message POST
● Reply to message POST
● Forward message POST
● Update message PATCH
● Delete message DELETE
● Move/Copy message POST

● Get attachments GET
● Create attachment POST
● Delete attachment DELETE
● Get folders GET
● Create folder POST
● Update folder PATCH
● Delete folder DELETE
● Move/Copy folder POST

Office 365 Contacts API operations
● Get contacts GET
● Create contact POST
● Update contact PATCH
● Delete contact DELETE
● Get contact folders GET

Office 365 Calendar API operations
● Get events GET
● Create event POST
● Update event PATCH
● Delete event DELETE
● Get attachments GET
● Create attachment POST
● Delete attachment DELETE

● Get calendars GET
● Create calendar POST
● Update calendar PATCH
● Delete calendar DELETE
● Get calendar groups GET
● Create calendar group POST
● Update calendar group PATCH
● Delete calendar group DELETE

Office 365 Files API operations
● Create folder PUT
● Get folder props GET
● List folder contents GET
● Update folder props PATCH
● Copy folder POST
● Delete folder DELETE
● Create/update file PUT
● Download file GET

● Get file properties GET
● Update file props PATCH
● Copy file POST
● Delete file DELETE
● Get drive props GET

Authentication

● These APIs (in some cases) support two
mechanisms for authenticating users
○ User ID and Password
○ OAuth 2.0

● (In the case of the Office 365 Files API only OAuth2 is
supported… at least so far as I can tell)

User ID and Password

● Simple to use
● Just set the psUsername and psPassword

properties of your HttpTransfer object
● Microsoft say it is OK for testing, but not

production
● The problem is that at some point the user

has to give your application their credentials

OAuth2

● Is complicated!!! (especially the MS way)
● Basically 4 steps:

○ Register your application with the provider
○ Make a call that invites the user to log in and allow

your app access to their data
○ Get an access token based on that consent
○ Use that token in your app's requests for data

Microsoft OAuth2

● Get an Office 365 Developer account
● Go into Microsoft Azure Portal and log in
● Find Active Directory (AAD: Azure Active

Directory)
● Navigate to: your-company → Applications

→ Add → Set up its properties (URI,
Callback URL)

https://manage.windowsazure.com

MS OAuth2 continued...

● Go into "Configure"
● Get the Client ID for the application
● Create a key (aka "client secret"... remember

that: it is not obvious those are the same
thing. And copy that key - you won't see it
again!)

● Add application permissions and delegated
permissions

MS OAuth2 continued...
● In JavaScript, we open the Microsoft OAuth2

URL in a new browser window, passing it a
whole lot of stuff in the query string

● If the user is not logged in to their Microsoft
365 account it will show them a login screen
to do that

● Then they will be presented with a screen
asking them to give your app access

https://login.windows.net/common/oauth2/authorize
https://login.windows.net/common/oauth2/authorize

MS OAuth2 continued...

● If they grant that, Microsoft redirects them to
your callback URL

● We wait in a JavaScript timer loop looking at
the window's URL until it changes to that

● Then we capture that full URL
● Parse the information from that query string
● Get the authorisation code out of that

MS OAuth2 continued...

● Use the authorisation code to request an
access token

● (I couldn't get this to work in JavaScript,
because of cross-site scripting restrictions,
so I had to do this step back in DataFlex)

● Use that access token in the "Authorization"
HTTP header of your API requests

Microsoft JSON oddities
● Microsoft's JSON has some awkward names
● Often starting "@odata." (example)
● Such as "@odata.context" or "@odata.id
● We can't have struct element names which

match those exactly, so we need to replace
them: with "odata_" on the way in and
reverse the procedure on the way out

https://msdn.microsoft.com/office/office365/APi/files-rest-operations#ListFolderContents

Demonstration

● Microsoft are not the only player in the Web
API space (although they have a lot more
than I have talked about so far)

● The 800-pound gorilla is Google (Amazon is
big too, but in a different way)

● No point in even starting to list Google's
range of APIs (see here)

Other APIs

https://developers.google.com/apis-explorer/#p/

Google Web APIs

● Google APIs only support OAuth 2.0
authentication

● Fortunately their mechanism is much simpler
than Microsoft's

● Sign up for a Google Developer account and
go to the Developer Console

https://console.developers.google.com/project

Google OAuth 2.0

● Create a new Client ID for your app with a
redirect URL and where your JavaScript will
be

● Copy the client ID and configure the APIs it
wants to access

● Configure a consent screen (optional)

Google OAuth 2.0 continued
● Call the Google OAuth2 endpoint in a new

browser window, specifying the "scopes"
your app wants to access

● Parse the redirect URL that is taken to when
the user gives consent

● Extract and store the access token
● Use that token in the query string of your API

HTTP requests

Demonstration

● The result of a single call
● To one operation
● Of one Google API
● Then organising and using the data coming

back from that
● Then using the URLs of the documents to

access them

That was...

So far...

● I have only dipped a toe in the water of the
ocean of available APIs (a large set from
Microsoft - a vast array from Google… and
there are others too)

● There really seems to be enormous potential
for things you can do with these

https://msdn.microsoft.com/library

Thank you for watching/listening

End of Presentation

