

DataFlex Mobile Web
Presented by: John Tuohy

Mobile/Touch Web Applications

◦ Mobile/Touch web applications support a new style of
application

◦ In this presentation we will:
• Compare Mobile/Touch and Desktop style applications
• Explain why a new application style was needed
• Introduce you to the new style’s architecture
• Show how you use this to build Mobile/Touch

applications

How is the Mobile/Touch Environment Different?

◦ Display
• They tend to be smaller screens
• There are many devices with all kinds of different sizes screens
• Screen sizes change on single device – portrait and landscape
• High resolution - let's you show things very small - good for reading, bad for touching
• Everything tends to be run full screen

◦ Pointing device
• Your finger is not a mouse or a mouse substitute
• The finger is a rather imprecise pointing device
• Finger target space is completely different than a mouse target space
• Scrolling is completely different
• There is no right click
• There is no double click

◦ Keyboard
• The on-screen keyboard uses up valuable screen real estate
• There are limited keys – no function keys, no ctrl/alt keys
• In general, they are hard to use

How is a Mobile/Touch User Different?
◦ Is used to the forward/back browser stack paradigm

• Understands a stack of operations (often seen as a breadcrumb)
◦ Is more adaptable

• Willing to experiment
• Doesn't want a lot of explanations
• Accepts and expects hidden interfaces
• Seems more accepting about not understanding something right away

◦ Expects an application to flow. The application will guide them
◦ Does not want a lot of confirmations - just do what's right

• Does not want warnings about doing the right thing
• Might want warnings when doing the wrong thing

◦ They expect applications to look great and “modern”
• Expect a “a less is more approach”
• In the battle of form over function – form wins

◦ They expect what we call a "webby" interface
• They might even expect this same interface on a desktop browser, even if this is not optimal

Consequences of these differences
◦ Applications don’t use windowing

• Just about everything is full “screen”
◦ Application flow is different

• You navigate forward, back and go home
◦ Applications are less user driven and more developer driven
◦ Traditional menu systems and tool bar systems don't work well

• When used, they are much smaller and much simpler
◦ Fewer Keyboard and mouse shortcuts

• No context menus
• No right click
• No double click

◦ Vertical scrolling is common, horizontal much less so
◦ Keyboard usage is kept to a minimum
◦ Modal dialogs are kept to a minimum

The Desktop Framework and Mobile/Touch

◦ The desktop style framework style was originally created to accommodate
evolving computers which had
• Big screens
• Flexible and precise mouse pointers
• Full functioning keyboards

◦ The desktop style may not be a good fit for mobile/touch devices
• Whole basis of the desktop framework is independent, selectable,

overlapping views
• The desktop framework makes extensive use of modal prompt lists
• The desktop style is flat, not deep
• The desktop style is completely user driven
• You can't just create DDOs, create prompt lists, create views, add them

to a menu and be ready to go

A New Application Style for Mobile/Touch

◦ We decided we needed a new style of application that
• Uses a drilldown style
• Is more application driven, less user driven
• Requires the developer to connect the pieces

◦ Would this be a new framework?

• Would it just be better to build a whole new drilldown
framework?

• We didn’t know at first
• This became a real test of the adaptability of the framework

What we did

◦ We built Mobile/Touch style as an extension

◦ The DataFlex framework survives with a new application style
• The DataDictionary classes and your DDOs require no changes
• The basis of the framework is unchanged - you still create views, which

contain a DDO structures and connected DEOs
• We extended the cWebView class
• We extended the web DEO classes

◦ Now the web framework supports a drilldown style

◦ We consider this to be a huge validation of the DataFlex framework

Which Style Should You use?

◦ The choice is yours

◦ One is not better than the other
• They excel in different environments

◦ The two styles can mixed in a single application, but we don't encourage this

as a long term strategy

◦ Don't underestimate the desktop/user driven mode
• It's unique, powerful and if you have the screen, the mouse and the

keyboard it does things the mobile/touch style cannot
• It is ideally suited from moving large Windows business applications to a

desktop browser

Understanding the Drilldown style

◦ The drilldown style represents a different way to build a
DataFlex application

◦ While it still uses views, the rules for connecting views
has changed

◦ There are some important new concepts that must be
understood

◦ Let’s get started

Selects and Zooms
◦ The drilldown style supports two types of views – Selects and Zooms

◦ Selects

• These will tend to be list based and are used for making selections
• A selection event may

◦ Navigate forward to another view (a drilldown)
◦ Navigate back returning that selection to the invoking view

◦ Zooms
• These tend to be form based and are used with a single record set
• These are used to view data, add data, and edit data

◦ The view type is determined by the peViewType property

View Navigation

◦ Application flow is determined by forward and back navigation between
views

◦ Forward Navigation
• Any view can navigate to any other view – this is forward navigation
• When this happens the view is added to a view-stack
• The view stack is visualized by a breadcrumb control

◦ Back Navigation

• You can navigate back to any view in the stack
• This will close all views in front of it in the stack
• You navigate back a single level or multiple levels

Sensible View Navigation

◦ Forward navigation to a new view should be sensible. For example:
1. A Select view might navigate to a Zoom view with same main DDO
2. A Select view might navigate to a Select view that is a list of children
3. A Zoom view might navigate to a Select view that is a list of parents

◦ When the forward navigation is sensible, it does very sensible things. For example:

1. A Select to Zoom with same main DDO is for viewing, editing records
2. A Select to Select that are its children is used for viewing constrained child records
3. A Zoom to Select of parents is used to select a parent (prompt list)

◦ The only restriction on forward navigation is you cannot navigate to a view that is already in

your view stack

Determining View Navigation

◦ The developer determines how views are linked and what they do when they navigate forward and
back

• This defines application flow
• You write code to do this – applications are developer driven

◦ A single view can be used for multiple purposes
• For example, a single view could be used to:

◦ zoom to details
◦ view a list constrained children
◦ act as a prompt list.

• A single view displayed view can have multiple purposes
• Using multi-purpose views makes things a little more complicated
• It is not required but it is a very powerful feature
• Views remain a reusable and multi-purpose component of a framework application

View Context

◦ The most important part of controlling view navigation is
knowing how it was invoked.
• You want to know where it came from and why
• This is referred to as its context
• We have created a model and an API for defining and using

this context
• The most important part of this context is knowing where it

navigated-from
• We have defined four navigation-from types
• It is critical that you understand these types

The Navigate-From types
◦ The navigate-from types are:

• nfFromMain

◦ From and to views have the same main DDO

• nfFromParent
◦ From view is a parent, to view will be constrained child records

• nfFromChild

◦ From view is a child, to view will be parents for this child (often a selection
list)

• nfUnknown

◦ Not defined, custom code will determine what to do

Understanding the Navigate-From Types

◦ Let’s look at WebOrderMobile to understand
this

Forward Navigation
◦ How to Navigate Forward

• You send the NavigateForward message

Send NavigateForward of oToView eFromType hoInvokingObject

Send NavigateForward of oZoomCustomer nfFromMain self
Send NavigateForward of oSelectOrder nfFromParent self
Send NavigateForward of oSelectCustomer nfFromChild self

◦ What happens

• The message is sent to the view to be activated
• You pass the navigate-from type and the invoking object (usually self)
• The new view is activated and added to the stack
• The view uses the navigate-from type information to properly initialize itself
• The navigate-from type context information is stored in the view
• OnNavigateForward can be used to customize your view upon activation
• Any event (row select, menu click, etc.) can look at the navigate-from context to make choices to navigate

forward, navigate back or whatever

Accessing the navigate-from context information

◦ The navigate-from type is the most important information about a navigation.
◦ It is stored in a navigation-data struct type that contains other relevant information about a forward navigation and

back navigation
◦ This is defined as:

Struct tWebNavigateData
 String sRowID
 Integer iTable
 Integer iColumn
 Integer eNavigateType
 Boolean bNewRecord
 Boolean bReadOnly
 Integer eViewTask
 String sData
End_Struct

◦ It is stored in a web-property and can be accessed using

Get GetNavigateData to NavigateData
Send SetNavigateData NavigateData

The Navigate Forward Events

◦ OnGetNavigateForwardData
• During forward navigation the framework will assign the proper

tWebNavigateData for you
• It will then send OnGetNavigateForwardData to the object that started the

navigation (the invoking object)
• You can use this to customize your tWebNavigateData data

◦ OnNavigateForward

• This is sent to the view being navigated-to
• It is sent after the tWebNavigateData data has been assigned
• You can use this to customize how your view looks and behaves
• You will use this all the time

Back Navigation
◦ How to Navigate Back

• NavigateClose

Send NavigateClose hoCallbackObject
• NavigateCancel

Send NavigateCancel

Send NavigateClose self
Send NavigateCancel

◦ What happens

• The message is sent to the top view
• The top view will attempt to close
• If data loss exists

◦ A warning dialog may be presented
◦ A save may be attempted
◦ The close/cancel may be halted

• If NavigateClose, the invoking view will be updated as needed
• If NavigateCancel, no update occurs

The Navigate Close Events
◦ During a NavigateClose (but not a NavigateCancel) these events are sent:

◦ OnGetNavigateBackData

• During back navigation the framework will assign the proper tWebNavigateData data
for you

• It will then send OnGetNavigateBackData to the object that started the back navigation
(the object passed in NavigateClose)

• You can use this to customize your tWebNavigateData data

◦ OnNavigateBack
• This is sent to the view being navigated back-to
• It is sent after the tWebNavigateData data has been assigned
• You can use this to customize how your should handle an update
• Most of the time, the automatic update will already do what you want

Back Navigation via Breadcrumb

◦ Selecting an item in the breadcrumb control
• Closes all views in front of that item
• If data loss exists

◦ A warning dialog may be presented
◦ A save may be attempted
◦ The cancel may be halted

• This is a cancel event – the invoking view is not updated

Building views

◦ Let’s build some views and look at some code

The Mobile/Touch Drilldown Summary
◦ There is more to this, but it is important you understand the basics. Here is what you need to

know

◦ View types – Views can be Selects or Zooms
◦ Navigation - Views are connected via forward navigation

• Views are maintained in a view-stack and visualized with a breadcrumb control
• The developer must code these connections

◦ A view’s context is determined by where if came from. Those navigate-from types are:
• From-Main
• From-Parent
• From-Child
• From-Undefined

◦ A single view can be used on a variety of contexts
◦ Based on the view’s navigate-from context that view will just do the right thing
◦ You can and will customize view behaviors based on the navigate-from context

DataFlex Mobile Web

◦ Thank you

	Slide Number 1
	DataFlex Mobile Web
	Mobile/Touch Web Applications
	How is the Mobile/Touch Environment Different?
	How is a Mobile/Touch User Different?
	Consequences of these differences
	The Desktop Framework and Mobile/Touch
	A New Application Style for Mobile/Touch
	What we did
	Which Style Should You use?
	Understanding the Drilldown style	
	Selects and Zooms	
	View Navigation	
	Sensible View Navigation	
	Determining View Navigation	
	View Context	
	The Navigate-From types	
	Understanding the Navigate-From Types
	Forward Navigation
	Accessing the navigate-from context information
	The Navigate Forward Events
	Back Navigation
	The Navigate Close Events
	Back Navigation via Breadcrumb
	Building views
	The Mobile/Touch Drilldown Summary
	DataFlex Mobile Web

