


DataFlex 2014 / 18.1 Overview 
Presented by: John Tuohy 



DataFlex 18.1 

◦ DataFlex 18.1 alpha 2 is now available for download 
◦ It’s most exciting addition is the support for web 

mobile/touch applications 
• Mobile/touch will be talked about extensively during 

the conference 
◦ There’s a lot more to 18.1 we want you to know about 

 
◦ And that’s the purpose of this talk… 

 



New Compile Time Function 

◦ RefTable() 
• Used to reference Table’s file number 

 
Move (RefTable(Customer)) to iTable 
 

• Used to reference Table’s column numbers 
 
Move (RefTable(Customer.Name)) to iColumn 
 

• Supported by code-sense 
• Adds to existing compile time functions – RefClass(), RefProc(), RefFunc(), 

RefProcSet() 
• Can be used in place of Get_FileNumber, Get_FieldNumber 

 



RefTable() Example Usage 
Example 1 

 
Get_Attribute DF_Field_Length of Customer.File_Number (RefTable(Customer.Name)) to iLength 
<or> 
Get_Attribute DF_Field_Length of (RefTable(Customer)) (RefTable(Customer.Name)) to iLength 
 

Example 2 
 
Function Field_CommitNoEnterOnIndex Integer iField Returns Boolean 
    Function_Return (RefTable(OrderHea.Order_Date)=iField) 
End_Function 

 
Example 3 

 
Procedure ClearNamePrompt  
    Set Prompt_Object of oCustomerDD  (RefTable(Customer.Name)) to hoMyPrompt 
End_Function 

 



Better Text and Binary Data Management 

◦ Reading and writing text and binary data can be a challenge 
• Data can be very large 
• Data can contain embedded zeros 

 
◦ Possible Solutions 

• Strings 
• Memory 
• UChar Arrays 

 

 



UChar Array Changes 

◦ The UChar Array 
 
UChar[] MyArrayOfBytes 
 

• A UChar array is an array of bytes: 
◦ Can represent character strings 
◦ Can represent binary data 
◦ Can be very big 

• Before 18.1, UChar arrays did not interoperate easily with 
the parts of DataFlex that read and write data 

• Now they do 
 



UChar Array Changes 

◦ New UChar Array command support for 
• Get_Field_Value 
• Set_Field_Value 
• Read_Block 
• Write 

 
◦ New UChar Array Function support 

• AppendArray() 
• StringToUCharArray() 
• UCharArrayToString() 

 
◦ This really opens things up! 

 



UChar Array Changes 

◦ For example, let’s read a PDF file and write it to a database 
 

Procedure ReadFromPDFFile String sOutFile 
    UChar[] PDFManual 
    // read a sequential file 
    Direct_Input Channel 5 ("binary:" + sOutFile) 
    If (SeqEOF) Begin 
        Procedure_Return 
    End 
    // read entire file into UChar array 
    Read_Block Channel 5 PDFManual -1 
    Close_Output Channel 5 
    // write this to my datafile  
    Set_Field_Value (RefTable(Product))  (RefTable(Product.PdfManual)) to PDFManual 
End_Procedure 



New Struct and Array Functions 
◦ AppendArray() 

• Appends two arrays 
 

◦ IsSameArray() 
• Returns true of two arrays are the same (including array of structs) 

 
◦ IsSameStruct() 

• Returns true of two structs are the same 
 

◦ BinarySearchInsertPos() 
• Returns insert position for target data for missing data in sorted list 
• Used with SearchArray() and InsertInArray() to insert data in a sorted list 

 
 
 

 
 



New Struct and Array Functions   

◦ Using  BinarySearchInsertPos() 
 

• How to insert new value into a sorted list 
   

// this assumes your array is already sorted 
 
Move (BinarySearchArray(SearchData,DataArray)) to iIndex  
 
// if key not found, add it  
If (iIndex = -1) Begin 
    Move (BinarySearchInsertPos()) to iIndex 
    Move (InsertInArray(DataArray, iIndex,SearchData)) to DataArray 
End 
 
// iIndex will contain the position of the data 
Function_return iIndex 

 
 



Struct and Array Function Changes 

◦ InsertInArray() 
• Passing array size appends to end of array 
• Passing -1 appends to end of array 

 
◦ RemoveFromArray() 

• Passing -1 removes from end of array 



Array Search and Sort Changes  

◦ The DataFlex search and sort functions are: 
 

SortArray() 
SearchArray() 
BinarySearchArray() 

 
◦ These functions have two different syntaxes for working with simple data types and struct 

(complex) data types 
 

SortArray(Target, SourceArray) 
SortArray(Target, SourceArray, oSearchObject, RefFunc(MySearchFn)) 
 

◦ Working with the complex style, is more complex and slower 
◦ Now you can use the simple syntax in more cases 



Array Search and Sort Changes  

◦ Now you can use the simple syntax with structs if: 
• The evaluation is based on the first member of the struct 
• The first member of the struct is a simple type (e.g., String) 

 
◦ Using the simple syntax is not only simpler, but faster 

 
◦ If these conditions are not met, you can continue to use the complex syntax 

 
◦ This makes it easier and faster to perform searches and sorts on “key/data” 

style arrays 
 



Data Dictionary Changes 

◦ Data Dictionaries are faster 
• Uses a new internal cDDBuffer class 
• No code changes required 

 
• How will this impact your application? 

◦ DDOs are already pretty fast, when will you see this? 
• During DD batch update operations 
• You are processing a lot of records 
• You are processing tables with a lot of parents 
• Tables with a very large number of columns 



Data Dictionary Changes 

◦ Data Dictionary objects use less memory with large fields 
• Extended DD Fields are used for Binary and Text 
• They now only use memory needed and not the maximum 

possible 
• This can greatly reduce memory usage 
• No code changes required 

 
• This is possible because of the new UChar array changes 

 



Data Dictionary Changes 
◦ Cascade deletes are now more flexible 

• Allowing cascade deletes can now be defined at the child level 
◦ This is the child DDO that has records being deleted as part of the 

cascade 
◦ The child can define different cascade delete rules for each parent 
◦ This puts the cascade delete rule in the proper place 

 
◦ Set via new DD method: CascadeDeleteAllowed 

 
// In CustomerNotes DD Class 
Set CacadeDeleteAllowed (RefTable(Customer)) to True 
: 
// In OrderHea DD class  
Set CacadeDeleteAllowed (RefTable(Customer)) to False 

 



Data Dictionary Changes 

◦ Cascade Deletes and Null Parents 
• A child cascade delete can now just set a null relationship instead of deleting  
• Cascade delete can now set a child’s relationship to null instead of deleting 

the child 
◦ The child can define different rules for each parent 
◦ Applies only the parents that allow null relationships for that parent  

 
◦ Set via new DD method: CascadeDeleteParentNull 

 
// In OrderHea DD 
Set ParentNullAllowed (RefTable(SalesP)) to True 
Set CascadeDeleteParentNull (RefTable(SalesP)) to True 

 



Data Dictionary Changes 

◦ More flexible support for displaying committed fields 
 
• If a field is committed 

◦ All non-indexed fields are shown in DEOs as display-only  
◦ All indexed fields are shown in DEOs as no-put 

• This provides the flexibility to use these DEO fields for record finding 
• Some developers would prefer that these fields appear as display-only 
• You now have the choice 

 
• Field_CommitNoEnterOnIndex 

◦ This function lets you control this 
◦ This can be applied at the DD class or DD object level 
◦ This can be applied to all committed fields or selected fields 

 
 



Improvements in Handling of Deleted Records 

◦ The Problem 
• A user deletes a record that some other user has accessed 
• When a DDO cannot refind that record is raises an unhandled error 
• When this happens the end user sees one or more strange unhandled 

error 
• You get a support call 

 
◦ This is a long standing issue. It doesn’t happen often but when it does, it’s 

confusing 
 



Improvements in Handling of Deleted Records 

◦ This has been significantly improved in 18.1 
• When possible it just silently adapts to the change 
• If an error is presented, it’s a handled (i.e., expected) error 
• No or little programming changes required 
• Implemented on Windows and Web 



Connectivity Changes 

◦ There are a number of new changes in connectivity concerning 
record identity 
 

◦ First we need to discuss a few things 



Understanding Key Fields 

◦ Primary Keys 
• A table should have a unique key that defines each record’s identity 
• This is called the primary key 
• This key can be single segment or multi segment 
• Primary key values should not change 
• The primary key must have an index 
• Primary keys should be short as possible 
• Primary keys values should be “balanced” 

◦ Foreign Keys 
• Primary keys are pointed to by fields in other tables  
• These are called foreign keys 
• Foreign keys are usually indexed 



Types of Primary Keys  

◦ Primary Keys can be Natural or Artificial 
 

◦ Natural keys (Business keys) 
• A Natural key’s value is something that makes sense in the real world 

◦  e.g., a State abbreviation, someone’s initials 
• These are usually assigned by the user 
• They have a meaningful order 

 
◦ Artificial Keys (Surrogate keys) 

• Their value has no meaning in the real world 
• They tend to be system assigned 
• They may not have a meaningful order 

 



Types of Primary Keys  

◦ Should you use Natural or Artificial Keys? 
• This is a very old topic 
• This can be  a very touchy subject 

 
• You probably know all the arguments 

 
• We offer no recommendations, but let’s talk more 

about artificial keys 



Types of Artificial Keys 

◦ Recnum 
• They are auto assigned, short and fast 
• Assigned when new record is saved 
• They do not require a system table 
• They are unique to the embedded database 
• Value not known until after save 
• Developers generally avoid using these as Primary Keys. Why? 

◦ They are fragile 
◦ They don’t migrate easily to other tables 
◦ They don’t migrate easily to other databases 
◦ We agree 

 



Types of Artificial Keys 

◦ System-Table Key Values 
• They are system table assigned, short and fast (usually integers) 
• Assigned when new the record is saved 
• Assignment generally handled by your Data Dictionary 
• It requires locks on a system table with each new save 
• They can migrate to other databases 
• Value not known until after save 
• Widely used 



Types of Artificial Keys 

◦ SQL Identity  
• They are server assigned, short and fast 
• Assigned when a new record is saved 
• They are  “balanced” 
• Supported on most SQL platforms 
• Does not require a system table 
• Value not known until after save 
• Robust  
• Very widely used for Primary Keys 
• An improved recnum 

 



Types of Artificial Keys 

◦ SQL GUIDs 
• Are universally unique  
• They look like: 60FCEA2E-CFFA-4788-AB32-6B81F37D3FFA 
• Computer assigned 

◦ Can be assigned by the SQL Server or can be assigned by the application 
• They are big 

◦ Does this matter?  
• They are Pure 

◦ A GUID is a truly meaningless value 
◦ You’d never show it, memorize it or enter it 
◦ There is absolutely no order to it 

• Can be created, assigned and discarded at any time 
• No system table required 
• They are Unbalanced (but there’s help for that) 



RowId and Keys 

◦ Where does RowId fit in? 
 

• RowId is an abstraction of a Key 
• They can be used with recnum or standard tables 
• Works with any type of Primary Key table 
• This allows you and us to write code that works with any database 
• They can completely replace the need for recnum 

◦ The DataFlex runtime is completely RowId based 
◦ You can replace all recnum references in your code with RowId references 
◦ This makes it easier to move to and work in an SQL Database 

 
• They are the “one ring to rule them all” 

 
• We recommend moving to full RowId usage 



Connectivity Changes 

◦ Better SQL Primary Key Support 
• Primary keys can now be assigned in Table Editor 
• Primary keys are recognized when connecting to an existing SQL 

Table 
• Primary keys can be assigned when converting from embedded 

to SQL 
• They are supported with standard and recnum tables 

 
• New Attribute: DF_INDEX_SQL_PRIMARY_KEY 

 



Connectivity Changes 

◦ Better SQL Clustered Index Support 
• What is a clustered index 
• Clustered indexes can now be assigned from Table 

Editor 
• Supported with standard and recnum tables 

 
• New Attribute: DF_INDEX_CLUSTERED 

 



Connectivity Changes 

◦ Better SQL Identity Column Support 
• Identity columns can be assigned in Table Editor 
• Might require changes in your Data Dictionary 

(remove auto-increment) 
• Standard tables only 

 
◦ New Attribute: DF_FIELD_IS_IDENTITY 



Connectivity Changes 

◦ Better GUID Support 
• GUIDs can be assigned as primary Keys 

◦ IDs can be assigned via DD code  
◦ IDs can be assigned by the server via 

DF_FIELD_DEFAULT 
• [newid()] 
• [newsequentialid()] 

• GUIDS can be also be assigned to non-primary keys 
 



Connectivity Changes 

◦ Microsoft Azure SQL Support 
• Azure requires that all tables contain a clustered index 
• Even System Tables require a clustered index 

 
• This is now supported 

 



Connectivity Changes 

◦ Other 
• Connection and Conversion Wizards have been improved to 

support new features and be easier to use 
• Triggers and Foreign Keys are preserved during table changes 
• Cache time-outs have been fine tuned to improve performance 
• Improved large data handling 

◦ Get_Field_Value and Set_Field_Value UChar array changes 
 



ValueTree Support 

◦ ValueTrees are used to convert DataFlex data types (simple, structs and arrays) to a single format.  
◦ That format is the ValueTree struct 
◦ Because the ValueTree format is known, it can be saved, loaded and transmitted using a pre-

defined format 
◦ We use this extensively in Web Services (working with XML) 
◦ We use this extenisvely in the Web Framework (working with JSON) 
◦ This has always been a private format 
◦ As of 18.1, it is now public. This includes: 

• The ValueTree Struct definition 
• The ValueTreeSerializeParameter command 
• The ValueTreeDeserializeParameter command 

◦ This is an advanced technique 
◦ You may not directly see the benefit of this 
◦ You will see indirect benefits from DAW and from the community 



Studio and Debugger  

◦ Studio 
• The Web previewer is now an interactive designer 

◦ You can move and resize controls 
◦ You can drag and drop on to the designer 
◦ Specially designed to use “flow” design and display properties 

(piColumnCount, piColumnIndex, piColumnSpan) 
 

◦ Debugger 
• Initializes faster / runs faster 
• Err Indicator can be used in the watch window  
• Add to Watch makes it easier to add items to the watch window 
• Char/UChar variables are better supported (display and editing) 



Other Changes 

◦ COM Anchor Fix 
◦ Modal Dialog Fix 
◦ Web Services Fixes 
◦ Migration Improvements 
◦ Documentation Improvements 

 
◦ Read the What’s New for more details 

 



Web Application General Changes 

◦ Improved theme styling with Font-Icon images 
• This scales really nicely and looks sharp on all devices 

 
◦ DD Remember 

• DD Remember can now be added to your applications 
 

◦ List (cWebList) changes 
• Multi-line row support 
• Fixed width columns (good for fixed images) 

 
◦ Complex Web Properties are now supported 

• Web Properties now support Structs and Arrays 
• This makes it much easier to store larger amounts of data on your client 
• As easy to use as simple Web Properties (just add the WebProperty=True meta-tag) 



Web Application General Changes 
◦ Complex Web Properties are now supported 

• Web Properties now support Structs and Arrays 
• This makes it much easier to store larger amounts of data on your client 
• As easy to use as simple Web Properties (just add the WebProperty meta-tag) 

 
{ WebProperty=True } 
Property Struct[] pMyImportantData 

 
◦ Misc Changes 

• Better Thread Stack management 
◦ The thread stack size has been reduced to allow many more instances 
◦ This is configurable 

• Larger cookies are supported 
• Lots of minor bug fixes, browser support improvements and other tweaks 

 
◦ And… 



Web Mobile/Touch Support 

◦ DataFlex 18.1 provides full support for mobile/touch web devices 
 

◦ It provides everything you need to build great looking mobile/touch 
applications using DataFlex, the technology you know 
 
 



Web Mobile/Touch Overview 

◦ Drill-down model 
◦ Responsive technology 
◦ Mobile style “hamburger” menus 
◦ Action menus 
◦ Breadcrumb control 
◦ Touch friendly lists 

• Momentum scrolling 
• Multi-line rows 

◦ Optimized on-screen keyboard support 
◦ New mobile / touch theme 
◦ Templates & Wizards 

 



Mobile/Touch Web Applications  

◦ Over the next three days you will hear a lot about this. 
• Harm Wibier will introduce you to all of these features 

in his next talk. 
• Other team members will present in-depth 

presentations about all of these new features 
 

◦ There is a lot to see and a lot to learn 



The DataFlex 2014 / 18.1 

◦ The DataFlex development system remains 
• One Language 
• A unified and unique framework 
• Shared Data Dictionaries 
• One Studio & One Debugger 
• All focused on building business applications 

 
◦ Windows Applications 
◦ Desktop Web Applications 
◦ Mobile/Touch Web Applications 



The DataFlex 2014 / 18.1 

Thank you  
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