

DataFlex 2014 / 18.1 Overview
Presented by: John Tuohy

DataFlex 18.1

◦ DataFlex 18.1 alpha 2 is now available for download
◦ It’s most exciting addition is the support for web

mobile/touch applications
• Mobile/touch will be talked about extensively during

the conference
◦ There’s a lot more to 18.1 we want you to know about

◦ And that’s the purpose of this talk…

New Compile Time Function

◦ RefTable()
• Used to reference Table’s file number

Move (RefTable(Customer)) to iTable

• Used to reference Table’s column numbers

Move (RefTable(Customer.Name)) to iColumn

• Supported by code-sense
• Adds to existing compile time functions – RefClass(), RefProc(), RefFunc(),

RefProcSet()
• Can be used in place of Get_FileNumber, Get_FieldNumber

RefTable() Example Usage
Example 1

Get_Attribute DF_Field_Length of Customer.File_Number (RefTable(Customer.Name)) to iLength
<or>
Get_Attribute DF_Field_Length of (RefTable(Customer)) (RefTable(Customer.Name)) to iLength

Example 2

Function Field_CommitNoEnterOnIndex Integer iField Returns Boolean
 Function_Return (RefTable(OrderHea.Order_Date)=iField)
End_Function

Example 3

Procedure ClearNamePrompt
 Set Prompt_Object of oCustomerDD (RefTable(Customer.Name)) to hoMyPrompt
End_Function

Better Text and Binary Data Management

◦ Reading and writing text and binary data can be a challenge
• Data can be very large
• Data can contain embedded zeros

◦ Possible Solutions

• Strings
• Memory
• UChar Arrays

UChar Array Changes

◦ The UChar Array

UChar[] MyArrayOfBytes

• A UChar array is an array of bytes:
◦ Can represent character strings
◦ Can represent binary data
◦ Can be very big

• Before 18.1, UChar arrays did not interoperate easily with
the parts of DataFlex that read and write data

• Now they do

UChar Array Changes

◦ New UChar Array command support for
• Get_Field_Value
• Set_Field_Value
• Read_Block
• Write

◦ New UChar Array Function support

• AppendArray()
• StringToUCharArray()
• UCharArrayToString()

◦ This really opens things up!

UChar Array Changes

◦ For example, let’s read a PDF file and write it to a database

Procedure ReadFromPDFFile String sOutFile
 UChar[] PDFManual
 // read a sequential file
 Direct_Input Channel 5 ("binary:" + sOutFile)
 If (SeqEOF) Begin
 Procedure_Return
 End
 // read entire file into UChar array
 Read_Block Channel 5 PDFManual -1
 Close_Output Channel 5
 // write this to my datafile
 Set_Field_Value (RefTable(Product)) (RefTable(Product.PdfManual)) to PDFManual
End_Procedure

New Struct and Array Functions
◦ AppendArray()

• Appends two arrays

◦ IsSameArray()
• Returns true of two arrays are the same (including array of structs)

◦ IsSameStruct()

• Returns true of two structs are the same

◦ BinarySearchInsertPos()
• Returns insert position for target data for missing data in sorted list
• Used with SearchArray() and InsertInArray() to insert data in a sorted list

New Struct and Array Functions

◦ Using BinarySearchInsertPos()

• How to insert new value into a sorted list

// this assumes your array is already sorted

Move (BinarySearchArray(SearchData,DataArray)) to iIndex

// if key not found, add it
If (iIndex = -1) Begin
 Move (BinarySearchInsertPos()) to iIndex
 Move (InsertInArray(DataArray, iIndex,SearchData)) to DataArray
End

// iIndex will contain the position of the data
Function_return iIndex

Struct and Array Function Changes

◦ InsertInArray()
• Passing array size appends to end of array
• Passing -1 appends to end of array

◦ RemoveFromArray()

• Passing -1 removes from end of array

Array Search and Sort Changes

◦ The DataFlex search and sort functions are:

SortArray()
SearchArray()
BinarySearchArray()

◦ These functions have two different syntaxes for working with simple data types and struct

(complex) data types

SortArray(Target, SourceArray)
SortArray(Target, SourceArray, oSearchObject, RefFunc(MySearchFn))

◦ Working with the complex style, is more complex and slower
◦ Now you can use the simple syntax in more cases

Array Search and Sort Changes

◦ Now you can use the simple syntax with structs if:
• The evaluation is based on the first member of the struct
• The first member of the struct is a simple type (e.g., String)

◦ Using the simple syntax is not only simpler, but faster

◦ If these conditions are not met, you can continue to use the complex syntax

◦ This makes it easier and faster to perform searches and sorts on “key/data”

style arrays

Data Dictionary Changes

◦ Data Dictionaries are faster
• Uses a new internal cDDBuffer class
• No code changes required

• How will this impact your application?

◦ DDOs are already pretty fast, when will you see this?
• During DD batch update operations
• You are processing a lot of records
• You are processing tables with a lot of parents
• Tables with a very large number of columns

Data Dictionary Changes

◦ Data Dictionary objects use less memory with large fields
• Extended DD Fields are used for Binary and Text
• They now only use memory needed and not the maximum

possible
• This can greatly reduce memory usage
• No code changes required

• This is possible because of the new UChar array changes

Data Dictionary Changes
◦ Cascade deletes are now more flexible

• Allowing cascade deletes can now be defined at the child level
◦ This is the child DDO that has records being deleted as part of the

cascade
◦ The child can define different cascade delete rules for each parent
◦ This puts the cascade delete rule in the proper place

◦ Set via new DD method: CascadeDeleteAllowed

// In CustomerNotes DD Class
Set CacadeDeleteAllowed (RefTable(Customer)) to True
:
// In OrderHea DD class
Set CacadeDeleteAllowed (RefTable(Customer)) to False

Data Dictionary Changes

◦ Cascade Deletes and Null Parents
• A child cascade delete can now just set a null relationship instead of deleting
• Cascade delete can now set a child’s relationship to null instead of deleting

the child
◦ The child can define different rules for each parent
◦ Applies only the parents that allow null relationships for that parent

◦ Set via new DD method: CascadeDeleteParentNull

// In OrderHea DD
Set ParentNullAllowed (RefTable(SalesP)) to True
Set CascadeDeleteParentNull (RefTable(SalesP)) to True

Data Dictionary Changes

◦ More flexible support for displaying committed fields

• If a field is committed

◦ All non-indexed fields are shown in DEOs as display-only
◦ All indexed fields are shown in DEOs as no-put

• This provides the flexibility to use these DEO fields for record finding
• Some developers would prefer that these fields appear as display-only
• You now have the choice

• Field_CommitNoEnterOnIndex

◦ This function lets you control this
◦ This can be applied at the DD class or DD object level
◦ This can be applied to all committed fields or selected fields

Improvements in Handling of Deleted Records

◦ The Problem
• A user deletes a record that some other user has accessed
• When a DDO cannot refind that record is raises an unhandled error
• When this happens the end user sees one or more strange unhandled

error
• You get a support call

◦ This is a long standing issue. It doesn’t happen often but when it does, it’s

confusing

Improvements in Handling of Deleted Records

◦ This has been significantly improved in 18.1
• When possible it just silently adapts to the change
• If an error is presented, it’s a handled (i.e., expected) error
• No or little programming changes required
• Implemented on Windows and Web

Connectivity Changes

◦ There are a number of new changes in connectivity concerning
record identity

◦ First we need to discuss a few things

Understanding Key Fields

◦ Primary Keys
• A table should have a unique key that defines each record’s identity
• This is called the primary key
• This key can be single segment or multi segment
• Primary key values should not change
• The primary key must have an index
• Primary keys should be short as possible
• Primary keys values should be “balanced”

◦ Foreign Keys
• Primary keys are pointed to by fields in other tables
• These are called foreign keys
• Foreign keys are usually indexed

Types of Primary Keys

◦ Primary Keys can be Natural or Artificial

◦ Natural keys (Business keys)
• A Natural key’s value is something that makes sense in the real world

◦ e.g., a State abbreviation, someone’s initials
• These are usually assigned by the user
• They have a meaningful order

◦ Artificial Keys (Surrogate keys)

• Their value has no meaning in the real world
• They tend to be system assigned
• They may not have a meaningful order

Types of Primary Keys

◦ Should you use Natural or Artificial Keys?
• This is a very old topic
• This can be a very touchy subject

• You probably know all the arguments

• We offer no recommendations, but let’s talk more

about artificial keys

Types of Artificial Keys

◦ Recnum
• They are auto assigned, short and fast
• Assigned when new record is saved
• They do not require a system table
• They are unique to the embedded database
• Value not known until after save
• Developers generally avoid using these as Primary Keys. Why?

◦ They are fragile
◦ They don’t migrate easily to other tables
◦ They don’t migrate easily to other databases
◦ We agree

Types of Artificial Keys

◦ System-Table Key Values
• They are system table assigned, short and fast (usually integers)
• Assigned when new the record is saved
• Assignment generally handled by your Data Dictionary
• It requires locks on a system table with each new save
• They can migrate to other databases
• Value not known until after save
• Widely used

Types of Artificial Keys

◦ SQL Identity
• They are server assigned, short and fast
• Assigned when a new record is saved
• They are “balanced”
• Supported on most SQL platforms
• Does not require a system table
• Value not known until after save
• Robust
• Very widely used for Primary Keys
• An improved recnum

Types of Artificial Keys

◦ SQL GUIDs
• Are universally unique
• They look like: 60FCEA2E-CFFA-4788-AB32-6B81F37D3FFA
• Computer assigned

◦ Can be assigned by the SQL Server or can be assigned by the application
• They are big

◦ Does this matter?
• They are Pure

◦ A GUID is a truly meaningless value
◦ You’d never show it, memorize it or enter it
◦ There is absolutely no order to it

• Can be created, assigned and discarded at any time
• No system table required
• They are Unbalanced (but there’s help for that)

RowId and Keys

◦ Where does RowId fit in?

• RowId is an abstraction of a Key
• They can be used with recnum or standard tables
• Works with any type of Primary Key table
• This allows you and us to write code that works with any database
• They can completely replace the need for recnum

◦ The DataFlex runtime is completely RowId based
◦ You can replace all recnum references in your code with RowId references
◦ This makes it easier to move to and work in an SQL Database

• They are the “one ring to rule them all”

• We recommend moving to full RowId usage

Connectivity Changes

◦ Better SQL Primary Key Support
• Primary keys can now be assigned in Table Editor
• Primary keys are recognized when connecting to an existing SQL

Table
• Primary keys can be assigned when converting from embedded

to SQL
• They are supported with standard and recnum tables

• New Attribute: DF_INDEX_SQL_PRIMARY_KEY

Connectivity Changes

◦ Better SQL Clustered Index Support
• What is a clustered index
• Clustered indexes can now be assigned from Table

Editor
• Supported with standard and recnum tables

• New Attribute: DF_INDEX_CLUSTERED

Connectivity Changes

◦ Better SQL Identity Column Support
• Identity columns can be assigned in Table Editor
• Might require changes in your Data Dictionary

(remove auto-increment)
• Standard tables only

◦ New Attribute: DF_FIELD_IS_IDENTITY

Connectivity Changes

◦ Better GUID Support
• GUIDs can be assigned as primary Keys

◦ IDs can be assigned via DD code
◦ IDs can be assigned by the server via

DF_FIELD_DEFAULT
• [newid()]
• [newsequentialid()]

• GUIDS can be also be assigned to non-primary keys

Connectivity Changes

◦ Microsoft Azure SQL Support
• Azure requires that all tables contain a clustered index
• Even System Tables require a clustered index

• This is now supported

Connectivity Changes

◦ Other
• Connection and Conversion Wizards have been improved to

support new features and be easier to use
• Triggers and Foreign Keys are preserved during table changes
• Cache time-outs have been fine tuned to improve performance
• Improved large data handling

◦ Get_Field_Value and Set_Field_Value UChar array changes

ValueTree Support

◦ ValueTrees are used to convert DataFlex data types (simple, structs and arrays) to a single format.
◦ That format is the ValueTree struct
◦ Because the ValueTree format is known, it can be saved, loaded and transmitted using a pre-

defined format
◦ We use this extensively in Web Services (working with XML)
◦ We use this extenisvely in the Web Framework (working with JSON)
◦ This has always been a private format
◦ As of 18.1, it is now public. This includes:

• The ValueTree Struct definition
• The ValueTreeSerializeParameter command
• The ValueTreeDeserializeParameter command

◦ This is an advanced technique
◦ You may not directly see the benefit of this
◦ You will see indirect benefits from DAW and from the community

Studio and Debugger

◦ Studio
• The Web previewer is now an interactive designer

◦ You can move and resize controls
◦ You can drag and drop on to the designer
◦ Specially designed to use “flow” design and display properties

(piColumnCount, piColumnIndex, piColumnSpan)

◦ Debugger
• Initializes faster / runs faster
• Err Indicator can be used in the watch window
• Add to Watch makes it easier to add items to the watch window
• Char/UChar variables are better supported (display and editing)

Other Changes

◦ COM Anchor Fix
◦ Modal Dialog Fix
◦ Web Services Fixes
◦ Migration Improvements
◦ Documentation Improvements

◦ Read the What’s New for more details

Web Application General Changes

◦ Improved theme styling with Font-Icon images
• This scales really nicely and looks sharp on all devices

◦ DD Remember

• DD Remember can now be added to your applications

◦ List (cWebList) changes
• Multi-line row support
• Fixed width columns (good for fixed images)

◦ Complex Web Properties are now supported

• Web Properties now support Structs and Arrays
• This makes it much easier to store larger amounts of data on your client
• As easy to use as simple Web Properties (just add the WebProperty=True meta-tag)

Web Application General Changes
◦ Complex Web Properties are now supported

• Web Properties now support Structs and Arrays
• This makes it much easier to store larger amounts of data on your client
• As easy to use as simple Web Properties (just add the WebProperty meta-tag)

{ WebProperty=True }
Property Struct[] pMyImportantData

◦ Misc Changes

• Better Thread Stack management
◦ The thread stack size has been reduced to allow many more instances
◦ This is configurable

• Larger cookies are supported
• Lots of minor bug fixes, browser support improvements and other tweaks

◦ And…

Web Mobile/Touch Support

◦ DataFlex 18.1 provides full support for mobile/touch web devices

◦ It provides everything you need to build great looking mobile/touch
applications using DataFlex, the technology you know

Web Mobile/Touch Overview

◦ Drill-down model
◦ Responsive technology
◦ Mobile style “hamburger” menus
◦ Action menus
◦ Breadcrumb control
◦ Touch friendly lists

• Momentum scrolling
• Multi-line rows

◦ Optimized on-screen keyboard support
◦ New mobile / touch theme
◦ Templates & Wizards

Mobile/Touch Web Applications

◦ Over the next three days you will hear a lot about this.
• Harm Wibier will introduce you to all of these features

in his next talk.
• Other team members will present in-depth

presentations about all of these new features

◦ There is a lot to see and a lot to learn

The DataFlex 2014 / 18.1

◦ The DataFlex development system remains
• One Language
• A unified and unique framework
• Shared Data Dictionaries
• One Studio & One Debugger
• All focused on building business applications

◦ Windows Applications
◦ Desktop Web Applications
◦ Mobile/Touch Web Applications

The DataFlex 2014 / 18.1

Thank you

	Slide Number 1
	DataFlex 2014 / 18.1 Overview
	DataFlex 18.1
	New Compile Time Function
	RefTable() Example Usage
	Better Text and Binary Data Management
	UChar Array Changes
	UChar Array Changes
	UChar Array Changes
	New Struct and Array Functions
	New Struct and Array Functions 	
	Struct and Array Function Changes
	Array Search and Sort Changes	
	Array Search and Sort Changes	
	Data Dictionary Changes
	Data Dictionary Changes
	Data Dictionary Changes
	Data Dictionary Changes
	Data Dictionary Changes
	Improvements in Handling of Deleted Records
	Improvements in Handling of Deleted Records
	Connectivity Changes
	Understanding Key Fields
	Types of Primary Keys
	Types of Primary Keys
	Types of Artificial Keys
	Types of Artificial Keys
	Types of Artificial Keys
	Types of Artificial Keys
	RowId and Keys
	Connectivity Changes
	Connectivity Changes
	Connectivity Changes
	Connectivity Changes
	Connectivity Changes
	Connectivity Changes
	ValueTree Support
	Studio and Debugger	
	Other Changes
	Web Application General Changes
	Web Application General Changes
	Web Mobile/Touch Support
	Web Mobile/Touch Overview
	Mobile/Touch Web Applications	
	The DataFlex 2014 / 18.1
	The DataFlex 2014 / 18.1

